

#### **GENERAL DESCRIPTION**

The CM1117A is a series of low dropout three-terminal regulators with a dropout of 1.1V at 600mA output current.

These products have been optimized for low voltage where transient response and minimum input voltage are critical. These CM1117A provide current limit and thermal shutdown. Its circuit includes a trimmed band-gap reference to assure output voltage accuracy to be within  $\pm$  1%. On –chip thermal shutdown provides protection against any combination of overload and ambient temperatures that would create excessive junction temperatures.

The CM1117A is available in 2.5V and 3.3V versions. The fixed versions integrate the adjust resistors. It is also available in an adjustable version which can set the output voltage with two external resistors.

#### **FEATURES**

- ◆ Low Dropout Voltage: 1.1V at 600mA output Current.
- ◆ Output Noise from 10Hz to 10KHz: 0.003%
- ◆ PSRR at Io = 300mA and f =120Hz: 75dB
- ◆ Output Voltage Accuracy: ±1%
- On-Chip Thermal Shutdown
- ♦ Maximum Quiescent Current: I<sub>QMAX</sub> =5mA
- ◆ ESD (Human Body Model): 3.5KV
- ◆ Operation Junction Temperature –40 to 125°C

#### **APPLICATIONS**

- ◆ DVD/CD-ROM
- USB Device
- Add-on Card
- DVD Player
- ◆ PC Motherboard

#### PIN CONFIGURATION

SOT-89 Front View

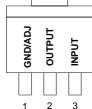



Figure 1. Package Types of CM1117A



# 600mA Low Dropout Voltage Regulator

## ORDERING INFORMATION

| Package Type  | Operating Temperature   | Output Voltage |
|---------------|-------------------------|----------------|
| SOT-89        | Range (T <sub>A</sub> ) | Output Voltage |
| CM1117AKCM89  | 0°C ~+70°C              | 2.5V           |
| CM1117ASCM89  | 0°C ~+70°C              | 3.3V           |
| CM1117ACM89   | 0°C ~+70°C              | ADJ.           |
| CM1117AGKCM89 | 0°C ~+70°C              | 2.5V           |
| CM1117AGSCM89 | 0°C ~+70°C              | 3.3V           |
| CM1117AGCM89  | 0°C ~+70°C              | ADJ.           |

<sup>\*</sup>Note: G : Suffix for Pb Free Product

# **BLOCK DIAGRAM**

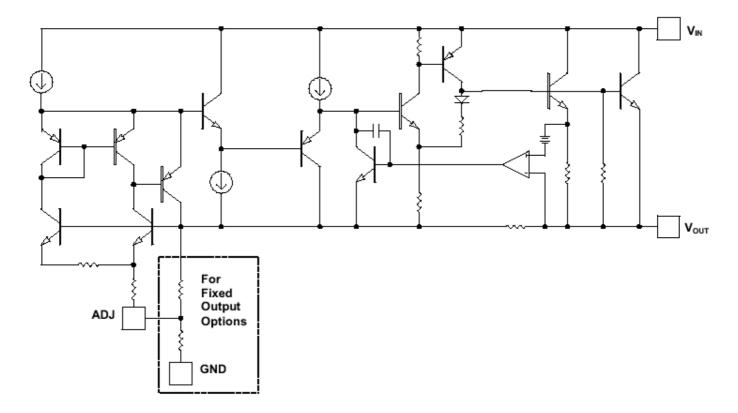



Figure 2. Functional Block Diagram of CM1117A

# **ABSOLUTE MAXIMUM RATINGS (Note 1)**

| Parameter                            | Symbol            | Value      | Unit                   |
|--------------------------------------|-------------------|------------|------------------------|
| Input Voltage                        | $V_{IN}$          | 15         | V                      |
| Operating Junction Temperature Range | T <sub>J</sub>    | 150        | $^{\circ}\mathbb{C}$   |
| Storage Temperature Range            | T <sub>STG</sub>  | -65 to 150 | $^{\circ}\!\mathbb{C}$ |
| Lead Temperature (Soldering, 10sec)  | T <sub>LEAD</sub> | 300        | $^{\circ}\!\mathbb{C}$ |
| ESD (Human Body Model)               | ESD               | 3500       | V                      |
| ESD (Machine Model)                  | ESD               | 400        | V                      |

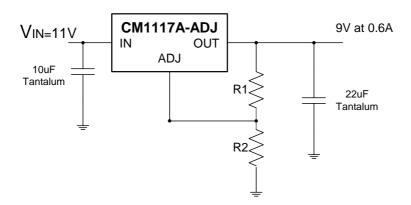
Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

## RESOMMENDED OPERATING CONDITIONS

| Parameter                            | Symbol           | Min. | Max | Units                  |
|--------------------------------------|------------------|------|-----|------------------------|
| Input Voltage                        | V <sub>IN</sub>  |      | 12  | V                      |
| Operating Junction Temperature Range | $T_J$            | -40  | 125 | $^{\circ}\!\mathbb{C}$ |
| Storage Temperature Range            | T <sub>STG</sub> | -65  | 150 | $^{\circ}\mathbb{C}$   |



# CM1117A 600mA Low Dropout Voltage Regulator


## **ELECTRICAL CHARACTERISTICS**

Operating Conditions:  $V_{IN} \leq 10V$ ,  $T_J = 25\,^{\circ}\mathbb{C}$ , unless otherwise specified. (P  $\leq$  maximum power dissipation) Limit appearing in Boldface type apply over the entire junction temperature range for operation, -40 $^{\circ}\mathbb{C}$  to 125 $^{\circ}\mathbb{C}$ 

| Parameter Symb                            | Symbol                    | Test Conditions                                                                                                 | CM1117A |         |       | Unit         |  |
|-------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------|---------|---------|-------|--------------|--|
|                                           | Symbol                    | Test Conditions                                                                                                 |         | Тур.    | Max.  | Unit         |  |
|                                           |                           | CM1117A-ADJ $I_{OUT}$ = 10mA, $V_{IN}$ = $V_{OUT}$ 2V, $T_{J=}$ 25 $^{\circ}$ C                                 | 1.238   | 1.250   | 1.262 |              |  |
| Reference Voltage                         | $V_{REF}$                 | $10\text{mA} \le I_{\text{OUT}} \le 600\text{mA}, 1.4\text{V} \le V_{\text{IN}} - V_{\text{OUT}} \le 8\text{V}$ |         |         |       | V            |  |
|                                           |                           | P≤maximum power dissipation                                                                                     | 1.225   | 1.250   | 1.270 |              |  |
| Output Voltage V <sub>OUT</sub>           |                           | CM1117A-2.5 $I_{OUT} = 10$ mA, $V_{IN} = 4.5$ V, $T_{J=}25$ °C                                                  | 2.475   | 2.5     | 2.525 | V            |  |
|                                           |                           | $10mA \le I_{OUT} \le 600mA, 3.9V \le V_{IN} \le 10V$                                                           | 2.450   | 2.5     | 2.550 |              |  |
|                                           | Vout                      | CM1117A-3.3 $I_{OUT} = 10$ mA, $V_{IN} = 5.0$ V, $T_{J=}25$ °C                                                  | 3.267   | 3.3     | 3.333 | .,           |  |
|                                           |                           | $10mA \le I_{OUT} \le 600mA, 4.75V \le V_{IN} \le 10V$                                                          | 3.235   | 3.3     | 3.365 | I V          |  |
|                                           |                           | CM1117A-ADJ                                                                                                     |         | 0.005   | 0.0   | 0/           |  |
|                                           |                           | $I_{OUT} = 10 \text{mA}, \ 1.5 \text{V} \le V_{IN} - V_{OUT} \le 10 \text{V}$                                   |         | 0.035   | 0.2   | %            |  |
| 1: 5 1:                                   | A 1/                      | CM1117A-3.3                                                                                                     |         | 4.0     |       | .,           |  |
| Line Regulator                            | $\Delta$ V <sub>OUT</sub> | $I_{OUT} = 10 \text{mA}, \ 1.5 \text{V} \le V_{IN} - V_{OUT} \le 10 \text{V}$                                   |         | 1.0 6.0 |       | mV           |  |
|                                           |                           | CM1117A-2.5                                                                                                     |         | 4.0     |       | >/           |  |
|                                           |                           | $I_{OUT} = 10 \text{mA}, \ 1.5 \text{V} \le V_{IN} - V_{OUT} \le 10 \text{V}$                                   |         | 1.0     | 6.0   | mV           |  |
|                                           |                           | CM1117A-ADJ                                                                                                     |         | 0.00    | 0.40  | 0/           |  |
| Load Regulation $\Delta$ V <sub>OUT</sub> |                           | $(V_{IN} = V_{OUT}) = 2V, 10mA \le I_{OUT} \le 600mA$                                                           |         | 0.20    | 0.40  | %            |  |
|                                           | A 1/                      | CM1117A-3.3                                                                                                     |         |         | 10.0  | .,           |  |
|                                           | Δ V <sub>OUT</sub>        | $(V_{IN} = V_{OUT}) = 2V, 10mA \le I_{OUT} \le 600mA$                                                           |         | 1.0     |       | mV           |  |
|                                           |                           | CM1117A-2.5                                                                                                     |         |         | 40.0  | .,           |  |
|                                           |                           | $(V_{IN} = V_{OUT}) = 2V, 10mA \le I_{OUT} \le 600mA$                                                           |         | 1.0     | 10.0  | mV           |  |
| Dropout Voltage                           |                           | $\Delta$ V <sub>REF</sub> =1% , I <sub>OUT</sub> = 0.6A                                                         |         | 1.1     | 1.3   | V            |  |
| Current Limit                             | I <sub>LIMIT</sub>        | $(V_{IN} - V_{OUT}) = 2V$                                                                                       | 0.75    | 0.9     |       | Α            |  |
| Adjust Pin Current                        |                           |                                                                                                                 |         | 60      | 120   | μΑ           |  |
| Adjust Pin Current                        |                           | 1.11/2/11/11/11/11/11/11/11/11/11/11/11/11                                                                      |         |         |       |              |  |
| Change                                    |                           | $1.4V \le (V_{IN} - V_{OUT}) \le 10V, 10mA \le I_{OUT} \le 600mA$                                               |         | 0.2     | 5.0   |              |  |
| Minimum Load Current                      |                           | $1.5V \le (V_{IN} - V_{OUT}) \le 10V(ADJ only)$                                                                 |         | 1.7     | 5.0   | mA           |  |
| Quiescent Current                         |                           | V <sub>IN</sub> = V <sub>OUT</sub> + 1.25V                                                                      |         |         | 5.0   | mA           |  |
|                                           |                           | $f = 120$ Hz, $C_{OUT} = 22 \mu$ F Tantalum                                                                     |         |         |       |              |  |
| Ripple Rejection                          |                           | (V <sub>IN</sub> – V <sub>OUT</sub> )= 3V, I <sub>OUT</sub> =300 mA                                             | 60      | 75      |       | dB           |  |
| Temperature Stability                     |                           |                                                                                                                 |         | 0.5     |       | %            |  |
| Long-Term Stability                       |                           | T <sub>A</sub> = 125℃, 1000hrs.                                                                                 |         | 0.3     |       | %            |  |
| RMS Output Noise                          |                           |                                                                                                                 |         |         |       |              |  |
| (% of V <sub>OUT</sub> )                  |                           | $T_A = 25^{\circ}C$ , $10Hz \le f \le 10KHz$                                                                    |         | 0.003   |       | %            |  |
| Thermal Shutdown                          |                           | Junction Temperature                                                                                            |         | 150     |       | °C           |  |
| Thermal Shutdown                          |                           | ·                                                                                                               |         |         |       |              |  |
| Hysteresis                                |                           |                                                                                                                 |         | 25      |       | $^{\circ}$ C |  |
| Thermal Resistance                        | 0                         | SOT-89                                                                                                          |         | 100     |       | °C/W         |  |
| (Junction to case)                        | heta JC                   | SOT-223                                                                                                         |         | 33      |       | °C/W         |  |



# **APPLICATION CIRCUIT**



 $V_{OUT} = V_{REF} * (1+R2/R1) + I_{ADJ} * R2$ 

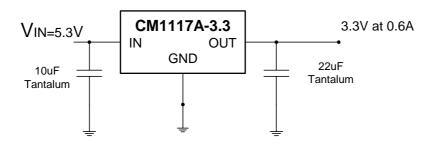
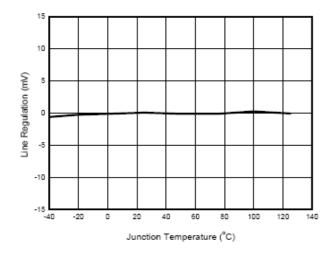
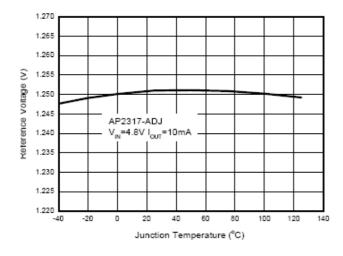




Figure 3. Typical Applications of CM1117A




## TYPICAL PERFORMANCE CHARACTERISTICS



20 15 10 10 -40 -20 0 20 40 60 80 100 120 140 Junction Temperature (°C)

Figure 4. Line Regulation vs. Junction Temperature

Figure 5. Load Regulation vs. Junction Temperature



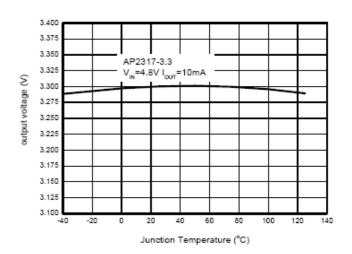
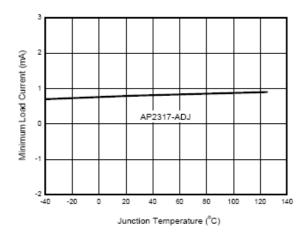




Figure 6. Reference Voltage vs. Junction Temperature

Figure 7. Output Voltage vs. Junction Temperature



# **TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)**



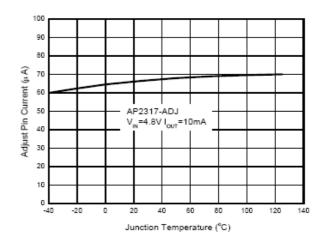
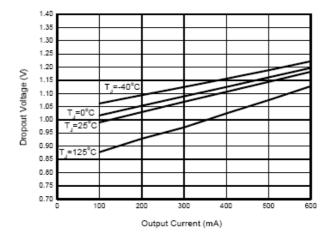




Figure 8. Minimum Load Current vs. Junction Temperature

Figure 9. Adjust Pin Current vs. Junction Temperature



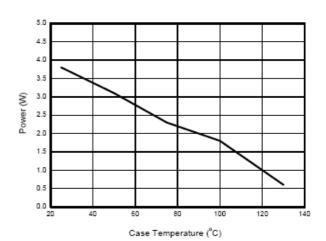
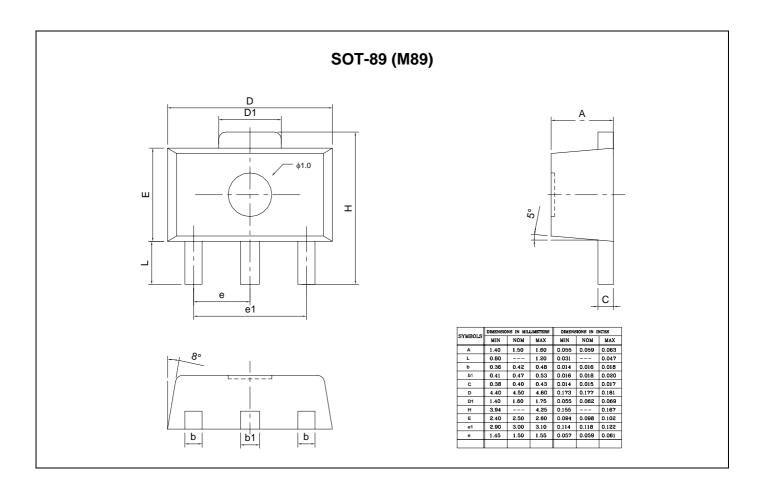




Figure 10. Dropout Voltage vs. Output Current

Figure 11. Maximum Power Dissipation



## **PACKAGE DIMENSION**





# 600mA Low Dropout Voltage Regulator

#### IMPORTANT NOTICE

Champion Microelectronic Corporation (CMC) reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. CMC integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of CMC products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

#### HsinChu Headquarter

#### Sales & Marketing

| 5F, No. 11, Park Avenue II,    | 11F, No. 306-3, SEC. 1, Ta Tung Road, |
|--------------------------------|---------------------------------------|
| Science-Based Industrial Park, | Hsichih, Taipei Hsien 221, Taiwan     |
| HsinChu City, Taiwan           |                                       |
| TEL: +886-3-567 9979           | TEL: +886-2-8692 1591                 |
| FAX: +886-3-567 9909           | FAX: +886-2-8692 1596                 |